Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection

نویسندگان

  • Josh Clevenger
  • Ye Chu
  • Carolina Chavarro
  • Stephanie Botton
  • Albert Culbreath
  • Thomas G. Isleib
  • C. C. Holbrook
  • Peggy Ozias-Akins
چکیده

Late leaf spot (LLS; Cercosporidium personatum) is a major fungal disease of cultivated peanut (Arachis hypogaea). A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools. Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SSR markers associated to early leaf spot disease resistance through selective genotyping and single marker analysis in groundnut (Arachis hypogaea L.)

Groundnut (Arachis hypogaea L.) is an important oilseed and food crop of the world. Breeding for disease resistance is one of major objectives in groundnut breeding. Early leaf spot (ELS) is one of the major destructive diseases worldwide and in West Africa, particularly in Burkina Faso causing significant yield losses. Conventional breeding approaches have been employed to develop improved var...

متن کامل

Identification of Transcripts Involved in Resistance Responses to Leaf Spot Disease Caused by Cercosporidium personatum in Peanut (Arachis hypogaea).

ABSTRACT Late leaf spot disease caused by Cercosporidium personatum is one of the most destructive foliar diseases of peanut (Arachis hypogaea) worldwide. The objective of this research was to identify resistance genes in response to leaf spot disease using microarray and real-time polymerase chain reaction (PCR). To identify transcripts involved in disease resistance, we studied the gene expre...

متن کامل

Genetic Dissection of Novel QTLs for Resistance to Leaf Spots and Tomato Spotted Wilt Virus in Peanut (Arachis hypogaea L.)

Peanut is an important crop, economically and nutritiously, but high production cost is a serious challenge to peanut farmers as exemplified by chemical spray to control foliar diseases such as leaf spots and thrips, the vectors of tomato spotted wilt virus (TSWV). The objective of this research was to map the quantitative trait loci (QTLs) for resistance to leaf spots and TSWV in one recombina...

متن کامل

QTL‐seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.)

Rust and late leaf spot (LLS) are the two major foliar fungal diseases in groundnut, and their co-occurrence leads to significant yield loss in addition to the deterioration of fodder quality. To identify candidate genomic regions controlling resistance to rust and LLS, whole-genome resequencing (WGRS)-based approach referred as 'QTL-seq' was deployed. A total of 231.67 Gb raw and 192.10 Gb of ...

متن کامل

Development and Utilization of InDel Markers to Identify Peanut (Arachis hypogaea) Disease Resistance

Peanut diseases, such as leaf spot and spotted wilt caused by Tomato Spotted Wilt Virus, can significantly reduce yield and quality. Application of marker assisted plant breeding requires the development and validation of different types of DNA molecular markers. Nearly 10,000 SSR-based molecular markers have been identified by various research groups around the world, but less than 14.5% showe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018